Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Pharm Res ; 47(4): 341-359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38592583

RESUMEN

The relationship between schizophrenia (SCZ) and cancer development remains controversial. Based on the disease-gene association platform, it has been revealed that tumor necrosis factor receptor (TNFR) could be an important mediatory factor in both cancer and SCZ development. TNF-α also increases the expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) in the development of SCZ and tumor, but the role of TNFR in mediating the association between the two diseases remains unclear. We studied the vital roles of TNFR2 in the progression of tumor and SCZ-like behavior using A549 lung cancer cell xenografted TNFR2 knockout mice. TNFR2 knockout mice showed significantly decreased tumor size and weight as well as schizophrenia-like behaviors compared to wild-type mice. Consistent with the reduced tumor growth and SCZ-like behaviors, the levels of TrkB and BDNF expression were significantly decreased in the lung tumor tissues and pre-frontal cortex of TNFR2 knockout mice. However, intravenous injection of BDNF (160 µg/kg) to TNFR2 knockout mice for 4 weeks increased tumor growth and SCZ-like behaviors as well as TrkB expression. In in vitro study, significantly decreased cell growth and expression of TrkB and BDNF by siTNFR2 transfection were found in A549 lung cancer cells. However, the addition of BDNF (100 ng/ml) into TNFR2 siRNA transfected A549 lung cancer cells recovered cell growth and the expression of TrkB. These results suggest that TNFR2 could be an important factor in mediating the comorbidity between lung tumor growth and SCZ development through increased TrkB-dependent BDNF levels.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neoplasias Pulmonares , Ratones Noqueados , Receptor trkB , Receptores Tipo II del Factor de Necrosis Tumoral , Esquizofrenia , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Humanos , Ratones , Esquizofrenia/metabolismo , Esquizofrenia/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/deficiencia , Receptor trkB/metabolismo , Receptor trkB/genética , Células A549 , Masculino , Conducta Animal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo
2.
Int J Mol Sci ; 20(11)2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31174394

RESUMEN

Osteoporosis is an abnormal bone remodeling condition characterized by decreased bone density, which leads to high risks of fracture. Previous study has demonstrated that Lycii Radicis Cortex (LRC) extract inhibits bone loss in ovariectomized (OVX) mice by enhancing osteoblast differentiation. A bioactive compound, kukoamine B (KB), was identified from fractionation of an LRC extract as a candidate component responsible for an anti-osteoporotic effect. This study investigated the anti-osteoporotic effects of KB using in vitro and in vivo osteoporosis models. KB treatment significantly increased the osteoblastic differentiation and mineralized nodule formation of osteoblastic MC3T3-E1 cells, while it significantly decreased the osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. The effects of KB on osteoblastic and osteoclastic differentiations under more physiological conditions were also examined. In the co-culture of MC3T3-E1 cells and monocytes, KB promoted osteoblast differentiation but did not affect osteoclast differentiation. In vivo experiments revealed that KB significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. These results suggest that KB may be a potential therapeutic candidate for the treatment of osteoporosis.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Ácidos Cafeicos/uso terapéutico , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Espermina/análogos & derivados , Animales , Conservadores de la Densidad Ósea/farmacología , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Ácidos Cafeicos/farmacología , Diferenciación Celular , Línea Celular , Células Cultivadas , Medicamentos Herbarios Chinos/química , Femenino , Ratones , Osteoblastos/citología , Osteoclastos/citología , Osteoporosis/etiología , Ovariectomía/efectos adversos , Espermina/farmacología , Espermina/uso terapéutico
3.
Pharmacol Ther ; 163: 1-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27130805

RESUMEN

Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.


Asunto(s)
Inflamación/fisiopatología , Neoplasias/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Peroxirredoxinas/metabolismo , Animales , Antioxidantes/química , Antioxidantes/metabolismo , Carcinógenos/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Peroxirredoxinas/química , Transducción de Señal , Transcripción Genética/fisiología
4.
PLoS One ; 9(3): e91508, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24618722

RESUMEN

Thiacremonone (2, 4-dihydroxy-2, 5-dimethyl-thiophene-3-one) is an antioxidant substance as a novel sulfur compound generated from High-Temperature-High-Pressure-treated garlic. Peroxiredoxin 6 (PRDX6) is a member of peroxidases, and has glutathione peroxidase and calcium-independent phospholipase A2 (iPLA2) activities. Several studies have demonstrated that PRDX6 stimulates lung cancer cell growth via an increase of glutathione peroxidase activity. A docking model study and pull down assay showed that thiacremonone completely fits on the active site (cys-47) of glutathione peroxidase of PRDX6 and interacts with PRDX6. Thus, we investigated whether thiacremonone inhibits cell growth by blocking glutathione peroxidase of PRDX6 in the human lung cancer cells, A549 and NCI-H460. Thiacremonone (0-50 µg/ml) inhibited lung cancer cell growth in a concentration dependent manner through induction of apoptotic cell death accompanied by induction of cleaved caspase-3, -8, -9, Bax, p21 and p53, but decrease of xIAP, cIAP and Bcl2 expression. Thiacremonone further inhibited glutathione peroxidase activity in lung cancer cells. However, the cell growth inhibitory effect of thiacremonone was not observed in the lung cancer cells transfected with mutant PRDX6 (C47S) and in the presence of dithiothreitol and glutathione. In an allograft in vivo model, thiacremonone (30 mg/kg) also inhibited tumor growth accompanied with the reduction of PRDX6 expression and glutathione peroxidase activity, but increased expression of cleaved caspase-3, -8, -9, Bax, p21 and p53. These data indicate that thiacremonone inhibits tumor growth via inhibition of glutathione peroxidase activity of PRDX6 through interaction. These data suggest that thiacremonone may have potentially beneficial effects in lung cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias/metabolismo , Neoplasias/patología , Peroxiredoxina VI/genética , Tiofenos/farmacología , Aloinjertos , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ajo/química , Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Ratones , Modelos Moleculares , Conformación Molecular , Mutación , Neoplasias/tratamiento farmacológico , Peroxiredoxina VI/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Unión Proteica , Tiofenos/química , Tiofenos/metabolismo , Carga Tumoral/efectos de los fármacos
5.
Free Radic Biol Med ; 69: 367-76, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24512906

RESUMEN

PRDX6 is a bifunctional protein with both glutathione peroxidase (GPx) and calcium-independent phospholipase A2 (iPLA2) activities, which are concomitantly increased with the expression of PRDX6. PRDX6 promoted lung tumor growth in an in vivo allograft model. Herein, we further studied the vital roles in tumor progression of PRDX6 in lung cancer using nude mice bearing PRDX6-overexpressing lung cancer cells. Nude mice xenografted with PRDX6 showed increases in tumor size and weight compared to control mice. Histopathological and Western blotting examination demonstrated that expression of proliferating cell nuclear antigen, vascular endothelial growth factor, metalloproteinases 2 and 9, and cyclin-dependent kinases accompanied by increased iPLA2 and GPx activities were increased in the tumor tissues of PRDX6-overexpressing nude mice. In tumor tissues of PRDX6-overexpressing mice, the activation of mitogen-activated protein kinases and AP-1 DNA binding were also increased. The growth of lung cancer cell lines (A549 and NCI-H460) was enhanced by the increase in iPLA2 and GPx activities of PRDX6. In addition, mutant PRDX6 (C47S) attenuated PRDX6-mediated p38, ERK1/2, and AP-1 activities as well as its enzyme activities in the A549 and NCI-H460 lines. Furthermore, tumor growth and p38, ERK1/2, and AP-1 activities were also inhibited in nude mice bearing mutant PRDX6 (C47S) compared to PRDX6. Therefore, our findings indicate that PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities.


Asunto(s)
Glutatión Peroxidasa/genética , Fosfolipasas A2 Grupo VI/genética , Neoplasias Pulmonares/genética , Peroxiredoxina VI/genética , Animales , Carcinogénesis , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glutatión Peroxidasa/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Neoplasias Pulmonares/patología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Peroxiredoxina VI/metabolismo , Factor de Transcripción AP-1 , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Free Radic Biol Med ; 61: 453-63, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23643677

RESUMEN

This study compared lung tumor growth in PRDX6-overexpressing transgenic (Tg) mice and normal mice. These mice expressed elevated levels of PRDX6 mRNA and protein in multiple tissues. In vivo, Tg mice displayed a greater increase in the growth of lung tumor compared with normal mice. Glutathione peroxidase and calcium-independent phospholipase 2 (iPLA2) activities in tumor tissues of Tg mice were much higher than in tumor tissues of normal mice. Higher tumor growth in PRDX6-overexpressing Tg mice was associated with an increase in activating protein-1 (AP-1) DNA-binding activity. Moreover, expression of proliferating cell nuclear antigen, Ki67, vascular endothelial growth factor, c-Jun, c-Fos, metalloproteinase-9, cyclin-dependent kinases, and cyclins was much higher in the tumor tissues of PRDX6-overexpressing Tg mice than in tumor tissues of normal mice. However, the expression of apoptotic regulatory proteins including caspase-3 and Bax was slightly less in the tumor tissues of normal mice. In tumor tissues of PRDX6-overexpressing Tg mice, activation of mitogen-activated protein kinases (MAPKs) was much higher than in normal mice. In cultured lung cancer cells, PRDX6 siRNA suppressed glutathione peroxidase and iPLA2 activities and cancer cell growth, but the enforced overexpression of PRDX6 increased cancer cell growth associated with their increased activities. In vitro, among the tested MAPK inhibitors, c-Jun NH2-terminal kinase (JNK) inhibitor clearly suppressed the growth of lung cancer cells and AP-1 DNA binding, glutathione peroxidase activity, and iPLA2 activity in normal and PRDX6-overexpressing lung cancer cells. These data indicate that overexpression of PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities through the upregulation of the AP-1 and JNK pathways.


Asunto(s)
Neoplasias Pulmonares/patología , Peroxiredoxina VI/fisiología , Animales , Línea Celular Tumoral , Proliferación Celular , ADN/metabolismo , Glutatión Peroxidasa/análisis , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Endogámicos C57BL , Peroxiredoxina VI/análisis , Fosfolipasas A2/metabolismo , Factor de Transcripción AP-1/metabolismo
7.
Apoptosis ; 17(12): 1316-26, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23007278

RESUMEN

We investigated whether snake venom toxin (SVT) from Vipera lebetina turanica enhances the apoptosis ability of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in cancer cells. TRAIL inhibited HCT116 cell growth in a dose-dependent manner; however, this reduction did not occur in TRAIL resistant HT-29, A549 and HepG2 cells with an even higher dose of TRAIL. SVT, but not TRAIL enhanced expression of cell death receptor (DR) in TRAIL resistant cancer cells in a dose-dependent manner. A combination of SVT with TRAIL significantly inhibited cell growth of TRAIL resistant HT-29, A549 and HepG2 cells. Consistent with cell growth inhibition, the expression of TRAIL receptors; DR4 and DR5 was significantly increased as well as apoptosis related proteins such as cleaved caspase-3, -8, -9 and Bax. However, the expression of survival proteins (e.g., cFLIP, survivin, XIAP and Bcl2) was suppressed by the combination treatment of SVT and TRAIL. Depletion of DR4 or DR5 by small interfering RNA significantly reversed the cell growth inhibitory and apoptosis blocking effects of SVT in HCT116 and HT-29 cells. Pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the reactive oxygen species (ROS) scavenger N-acetylcysteine reduced the SVT and TRAIL-induced upregulation of DR4 and DR5 expression, expression of the apoptosis related protein such as caspase-3 and-9, as well as cell growth inhibitory effects. The collective results suggest that SVT facilitates TRAIL-induced apoptosis in cancer cells through up-regulation of the TRAIL receptors; DR4 and DR5 via ROS/JNK pathway signals.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Muerte Celular/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Venenos de Víboras/toxicidad , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Receptores de Muerte Celular/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Venenos de Víboras/química , Viperidae
8.
BMC Cancer ; 12: 228, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22681760

RESUMEN

BACKGROUND: Abundant research suggested that the cancer cells avoid destruction by the immune system through down-regulation or mutation of death receptors. Therefore, it is very important that finding the agents that increase the death receptors of cancer cells. In this study, we demonstrated that the snake venom toxin from Vipera lebetina turanica induce the apoptosis of colon cancer cells through reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) dependent death receptor (DR4 and DR5) expression. METHODS: We used cell viability assays, DAPI/TUNEL assays, as well as western blot for detection of apoptosis related proteins and DRs to demonstrate that snake venom toxin-induced apoptosis is DR4 and DR5 dependent. We carried out transient siRNA knockdowns of DR4 and DR5 in colon cancer cells. RESULTS: We showed that snake venom toxin inhibited growth of colon cancer cells through induction of apoptosis. We also showed that the expression of DR4 and DR5 was increased by treatment of snake venom toxin. Moreover, knockdown of DR4 or DR5 reversed the effect of snake venom toxin. Snake venom toxin also induced JNK phosphorylation and ROS generation, however, pretreatment of JNK inhibitor and ROS scavenger reversed the inhibitory effect of snake venom toxin on cancer cell proliferation, and reduced the snake venom toxin-induced upregulation of DR4 and DR5 expression. CONCLUSIONS: Our results indicated that snake venom toxin could inhibit human colon cancer cell growth, and these effects may be related to ROS and JNK mediated activation of death receptor (DR4 and DR5) signals.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/fisiología , Neoplasias del Colon/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Venenos de Víboras/farmacología , Análisis de Varianza , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Western Blotting , Caspasas/administración & dosificación , Caspasas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno , Regulación hacia Arriba
9.
Toxicol Appl Pharmacol ; 258(1): 72-81, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22027265

RESUMEN

We investigated whether bee venom and melittin, a major component of bee venom, inhibit cell growth through enhancement of death receptor expressions in the human ovarian cancer cells, SKOV3 and PA-1. Bee venom (1-5 µg/ml) and melittin (0.5-2 µg/ml) inhibited the growth of SKOV3 and PA-1 ovarian cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of death receptor (DR) 3 and DR6 was increased in both cancer cells, but expression of DR4 was increased only in PA-1 cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, 8, and Bax was concomitantly increased, but the phosphorylation of JAK2 and STAT3 and the expression of Bcl-2 were inhibited by treatment with bee venom and melittin in SKOV3 and PA-1 cells. Expression of cleaved caspase-3 was increased in SKOV3, but cleaved caspase-8 was increased in PA-1 cells. Moreover, deletion of DR3, DR4, and DR6 by small interfering RNA significantly reversed bee venom and melittin-induced cell growth inhibitory effect as well as down regulation of STAT3 by bee venom and melittin in SKOV3 and PA-1 ovarian cancer cell. These results suggest that bee venom and melittin induce apoptotic cell death in ovarian cancer cells through enhancement of DR3, DR4, and DR6 expression and inhibition of STAT3 pathway.


Asunto(s)
Antineoplásicos/farmacología , Venenos de Abeja/farmacología , Janus Quinasa 2/antagonistas & inhibidores , Meliteno/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Receptores de Muerte Celular/fisiología , Factor de Transcripción STAT3/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Femenino , Humanos , Janus Quinasa 2/fisiología , Neoplasias Ováricas/patología , Factor de Transcripción STAT3/fisiología
10.
J Nutr Biochem ; 23(7): 706-15, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21820300

RESUMEN

Biphenolic components in the Magnolia family have shown several pharmacological activities such as antitumor effects. This study investigated the effects of 4-O-methylhonokiol (MH), a constituent of Magnolia officinalis, on human colon cancer cell growth and its action mechanism. 4-O-methylhonokiol (0-30 µM) decreased constitutive activated nuclear factor (NF)-κB DNA binding activity and inhibited growth of human colon (SW620 and HCT116) cancer cells. It also caused G0-G1 phase cell cycle arrest followed by an induction of apoptotic cell death. However, knockdown with small interfering RNA (siRNA) of p21 or transfection with cyclin D1/Cdk4 binding site-mutated p21 abrogated MH-induced cell growth inhibition, inhibition of NF-κB activity as well as expression of cyclin D1 and Cdk4. Conversely, inhibition of NF-κB with specific inhibitor or siRNA augmented MH-induced apoptotic cell death. 4-O-methylhonokiol inhibited tumor growth, NF-κB activity and expression of antiapoptotic proteins; however, it increased the expression of apoptotic proteins as well as p21 in xenograft nude mice bearing SW620 cancer cells. The present study reveals that MH causes p21-mediated human colon cancer cell growth inhibition through suppression of NF-κB and indicates that this compound by itself or in combination with other anticancer agents could be useful for the treatment of cancer.


Asunto(s)
Compuestos de Bifenilo/farmacología , Neoplasias del Colon/tratamiento farmacológico , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Lignanos/farmacología , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular , Proliferación Celular/efectos de los fármacos , Colon/citología , Colon/efectos de los fármacos , Colon/patología , Neoplasias del Colon/patología , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Magnolia/química , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/genética , ARN Interferente Pequeño/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...